# Worksheet 1-8 Distance and Midpoint

Use the distance formula or Pythagorean Theorem to find the distance of segment  ${\bf CD}$ .

Find the coordinates of the midpoint of segment AB.



12 ) M is the midpoint of segment AB and M is (-4,-5) and A(-2,-9). Find the other endpoint B.

13) The midpoint of segment AB is M(6, -2). A has coordinates (1, 2). Find the coordinates of B.

14) The midpoint of segment AB is M(3, 4). One endpoint is A(-3, -2). Find the coordinates of the other endpoint B.

## Finding Perimeter and Area of Rectangles & Triangles

Date:

Per:

Name:

| Graph the coordinate points, connect the points in order to form a polygon for each, and find the perimeter and area for the polygon. |                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1) A(-1,1) B(-1,4) C(3,1) D(3,4)                                                                                                      | 2) A(-2,-1) B(3,-1) C(-2,3)                                                                                           |
| 5-<br>4-<br>3-<br>2-<br>1-                                                                                                            | 6-<br>5-<br>4-<br>3-<br>2-<br>1-                                                                                      |
| -6-5-4-3-2-10 1 2 3 4 5 6 x -27 -31 -44 -5-                                                                                           | 4-6-5-4-3-2-10 1 2 3 4 5 6 x -2-2-3-4-5-5-6-5-6-5-6-5-6-5-6-5-4-3-2-10 1 2 3 4 5 6 x                                  |
| 3) A(2,0) B(-3,0) C(-1,3)  6  5  4  3  2  1  -6 -5 -4 -3 -2 -10 1 2 3 4 5 6 x  -3  -4  -5  -6-7                                       | 4) A(3,0) B(-3,-2) C(-4,1) D(2,3)  5 5 4 3 2 1 1 -6-5-4-3-2-i 0 1 2 3 4 5 6 x  -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 |
| 5) A(-1,2) B(-1,-2) C(3,0)                                                                                                            | 6) A(-3,-1) B(1,-1) C(4,1) D(-1,2)                                                                                    |
| 6-5-4-3-2-10 123456 *                                                                                                                 | 6 5 4 3 2 10 1 2 3 4 5 6 ×                                                                                            |
| -2-<br>-3<br>-4<br>-5-<br>-6                                                                                                          | -1<br>-2<br>-3<br>-4<br>-5<br>-6                                                                                      |

## **Equations of Parallel Lines**

Write the equation of each line in slope-intercept form.

- 1. The line with slope 3 that passes through (0, 6)
- 2. The line with slope -4 that passes through (0, -5)
- 3. The line with slope -1 that passes through (3, 5)
- 4. The line with slope 5 hat passes through (2, -5)
- 5. The line parallel to y= 5x + 1 that passes through
- 6. The line parallel to y= -3x 2 that passes through (-2, 7)
- 7. The line that passes through (-1, 0) and is parallel 8. The line that passes through (3, 5) and is parallel to the line through (0, 1) and (2, -3)
  - to the line through (3, 3) and (-3, -1)
- 9. The line parallel to x 3y = -12 that passes . through (-3, 4)
- 10. The line parallel to 3x + y = 8 that passes through (0, -4)

11. Use the slope-intercept form of a linear equation to prove that if two lines are parallel then they have the same slope. (hint: use an indirect proof. Assume the lines have different slopes,  $m_1$  and  $m_2$ . Write the equations of the lines and show that there must be a point of intersection.)

#### **Equations of Perpendicular Lines**

Write the equation of each line in slope-intercept form.

- 1. The line perpendicular to  $y = \frac{1}{2}x + 1$  that passes through (1, 4)
- 2. The line perpendicular to y = -x + 2 that passes through (-1, -7)
- 3. The line that passes through (1, 2) and is perpendicular to the line through (3, -2) and (-3, 0)
- 4. The line that passes through (-2, 3) and is perpendicular to the line through (0, 1) and (-3, -1)
- 5. The line perpendicular to 2y = x + 5 that passes through (2, 1)
- 6. The line perpendicular to 3x + y = 8 that passes through (0, -2)
- 7. Error Analysis A student was asked to find the equation of the line perpendicular to y 2x = 1 that passes through the point (4, 3). The student's work is shown below. Explain the error and give the correct equation,

The given line has slope -2, so the required line has slope 1/2.  $y - y_1 = m(x - x_1)$ Use point-slope form  $y - 3 = \frac{1}{2}(x - 4)$ Substitute for m, x1, y1  $y - 3 = \frac{1}{2}x - 2$ Distributive Property y = 1/2 x + 1 Add 3 to both sides

- 8. Are the lines given by the equations -4x + y = 5 and -x + 4y = 12 parallel, perpendicular, or neither? Why?
- 9. Consider the points A (-7, 10), B (12, 7), C (10, -24), and D (-8, -3). Which two lines determined by these points are perpendicular? Explain.

#### **Review: Coordinate Geometry**

- 1. Find the distance between (4, 8) and (-12, 19)
  - A. 4.3 units
- B. 10.1 units
- C. 7.5 units
- D. 13.6 units
- 2. A doctor reads coordinates off a computer screen for endpoints of a bone. The endpoints are at (-4, 2) and (2, 5). What is the length of the bone? Round your answer to the nearest tenth of a unit.
  - A. 5.4 units
- B. 6.7 units
- C. 9,2 units
- D. 10.0 units
- 3. Find the midpoint M of XY if X is (4, -3) and Y is (105, 98).
  - A. (43, 47.5)
- B. (50.5, 50.5)
- C. (54.5, 47.5)
- D. (54.5, 43)
- 4. A small plane needs to refuel approximately halfway to its destination. It takes off from its base located at (9, -2), on the coordinate grid and its destination is located at (-3, 8). Which of the following locations is the closest to halfway?
  - A. (2.2, 2)
- B. (2.5, 3.5)
- C. (4, 1.5)
- D. (5, -4.5)
- 5. Which equation represents a line that is not parallel to the others?
  - A. 2x y = 3
- B. 2x y = -5.
- $C_{x} 2x + y = -1$
- D. -2x y = 4
- 6. Which two equations below ARE parallel with each other?
  - A. 3x y = 3
- B. 6x + 2y = -5
- C. -2x y = -1
- D. -6x + 2v = 4

- Name:
- 7. An isosceles triangle has vertices at (1, 1) and (3, 3). Which of the following could be the coordinates of the third vertex?
- A. (-1, 3) B. (3, 2) C. (-1, -3) D. (5, -1)
- 8. Do the following points form an isosceles triangle? Justify your answer. L(-1,1), M(2, 3), O(2, 1)
- 9. What is the equation of the line parallel to line m that passes through point P?



- A y = -2x 5
- B. y = 2x 4
- C. v = 2x 5
- $D_{x} v = -2x 4$
- 10. Graph the square with vertices (3, 3), (6, 6), (9, 3) and (6, 0) and find the area.





12. What is the area of triangle ABC, with A(-1, 0), B(5, 0), and C(3, 7)?

- 13. What is the equation of the line through the point (3, 5) that is perpendicular to the line  $y=-\frac{1}{2}x+2?$
- 14. What is the perimeter of  $\Delta PQR$  if P is (5, 7), Q is (1, 1) and R is (-2, 6)?

15. Write an equation in slope-intercept form of the line that is perpendicular to the line with equation  $\gamma = 3x + 1$  and that passes through point P(6, 0). Explain your reasoning.

16.  $\overrightarrow{CD}$  has endpoints C(1,5) and D(1,-7).  $\overrightarrow{EF}$  has endpoints E(-1,-3) and F(3,1). Prove the segments have the same midpoint.

Use the figure below to answer parts questions 17-21.



- 17. What are the coordinates of points A, B and C?
- 18. Find the length of each segment.
- 19. Name all pairs of congruent segments.
- 20. Find the perimeter of  $\triangle ABC$ .
- 21. What type of triangle is BC?
- 22. Find the area and perimeter of the polygon below.

