

$$a \cdot b = c \cdot d$$

Inscribed Angle

Central Angle = measure of intercepted Arc Inscribed Angle = 1/2 Central Angle = 1/2 measure of Intercepted Arc

Arc Length of a Circle

If θ is measured in degrees then arc length $=\frac{\theta}{360^{\circ}} \times 2\pi r$

Area of Circle and Sector

If θ is measured in degrees then area of sector $=\frac{\theta}{360^{\circ}} \times \pi r^2$

Basic shapes & their volumes

Sphere

Cylinder

Cone

$$V = \frac{1}{3}m^2h$$

Cavalieri's Principle

If same cross section and height

& parallel bases, then same volume

