Interpreting Language in Math Expressions
Example: $-3 x^{2}+4 x-2$

Vocabulary	Definition	From Example
Algebraic Expression	A mathematical phrase that contains numbers, operations, and/or variables DOES NOT have an equal sign	See above example Use to create examples for each part of the expression
Variable	A symbol used to represent a quantity that can change	
Term	Part of an expression that is separated by " + " or "-""	
Like Terms	Terms with the same variable and raised to the same exponent	
Coefficient	A number that is multiplied by a variable Located at the front of the variable	The number that indicates how many times the base is being multiplied by itself The little number at the top of the base number
Base	The number in a power that is used as a factor The big number connected to the exponent	
Constant	The term that DOES NOT contain a variable Stands Alone Usually placed at the end of an expression	Degree Should be listed first in the expression Shent Degree Exponent

Classifying Polynomials

By Degree		By Number of Terms	
Degree	Name	\# of Terms	Name
0		1	
1		2	
2		3	
3	4 or more		

Name each polynomial by degree and number of terms.

1) $-10 x$
2) $-10 r^{3}-8 r^{2}$
3) $3 y^{2}-8 y+2$
4) $-3 n^{3}+n^{2}-10 n+9$
